Rethinking Failure-Tolerant Traffic Engineering with Demand Prediction

Shiju Zhao, Jiaqi Zheng, Guihai Chen Nanjing University

4 July 2025

Wide-Area Network (WAN)

- An essential infrastructure
 - ✓ Connect vast areas

- **√** ...
- Failures are common
 - √ Fiber cuts
 - ✓ Power outages
 - √ Hurricanes
 - ✓ Misconfigurations

Problem: Network Failure

Unpredictable

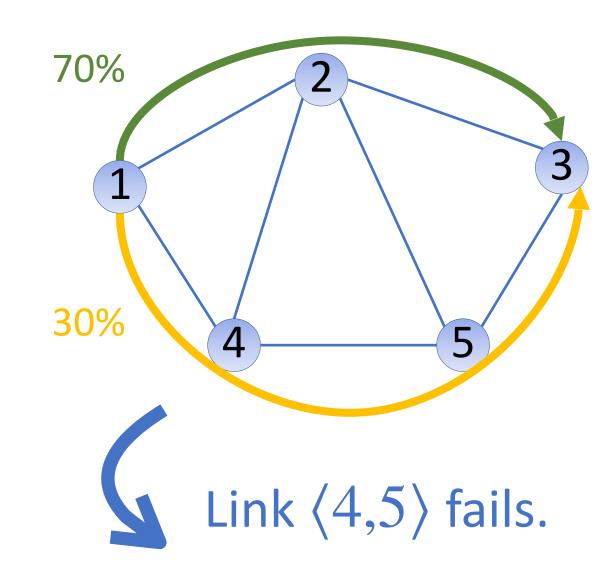
- The unpredictable nature of infrastructure or operational failures is inherent in the networking system.

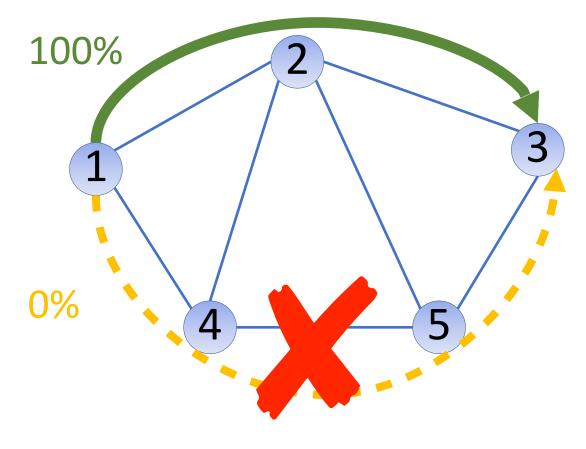
Severe impact

- Congestion, packet loss, long latency, availability drop, etc.

How to handle the unpredictable network failures?

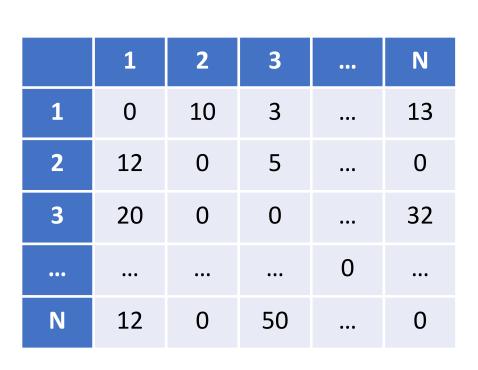
- 1. Data plane: Fast rerouting (R3@SIGCOMM'10)
- 2. Control Plane: Proactively handle common failure scenarios before accidents happen (FFC@SIGCOMM'14)

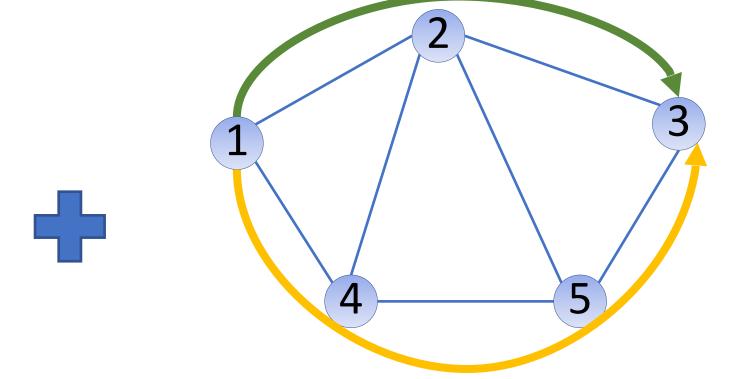




3 2025 - 7 - 4

Failure-Tolerant Traffic Engineering

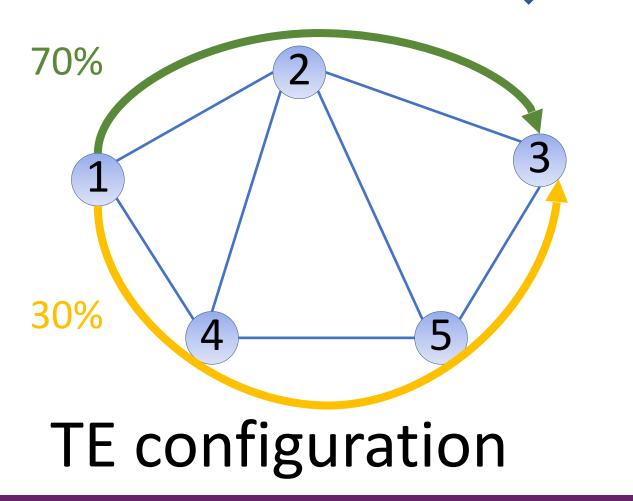


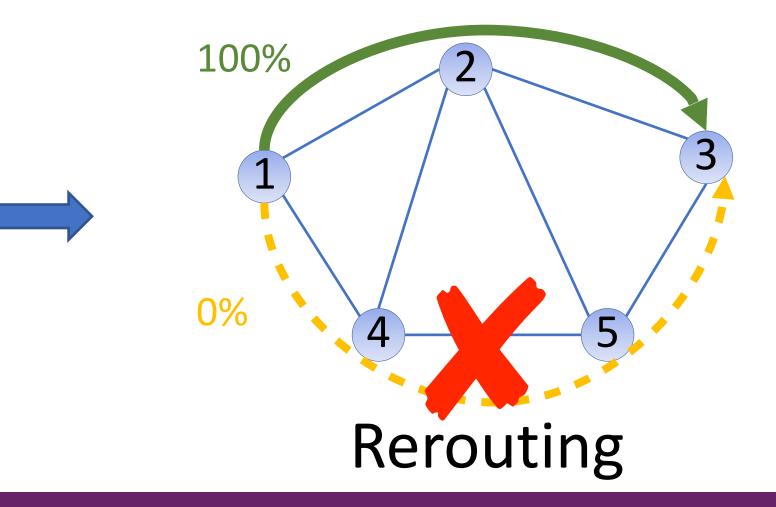


Demand matrix

Topology & failure scenarios ...

Optimize a global objective





4

- 1. First, predict the demand matrix, i.e., the traffic demands of all node pairs.
- 2. Second, optimize the network risk, e.g., demand loss and availability.
- 3. Third, reroute upon detecting network failures.

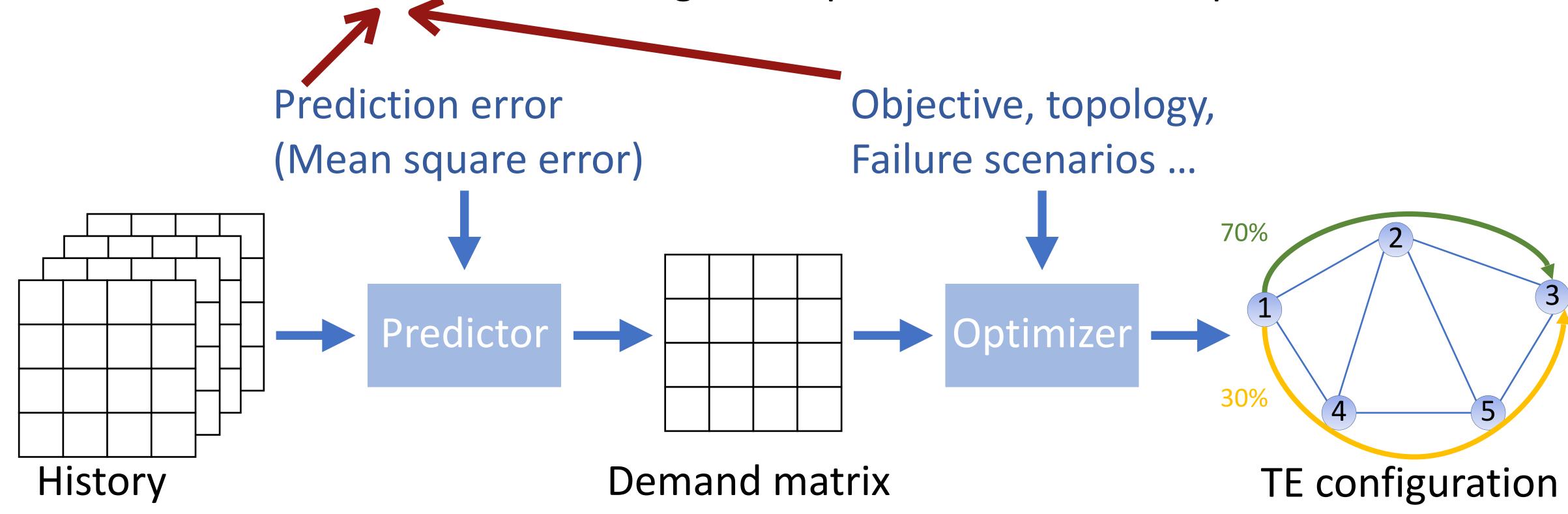
Examples:

FFC@SIGCOMM'14, TEAVAR@SIGCOMM'19, ARROW@SIGCOMM'21

Challenge: Demand Uncertainty

 However, a certain degree of unpredictability remains in customer-facing traffic demands.

There is a mismatch between the goals of prediction task and optimization task.

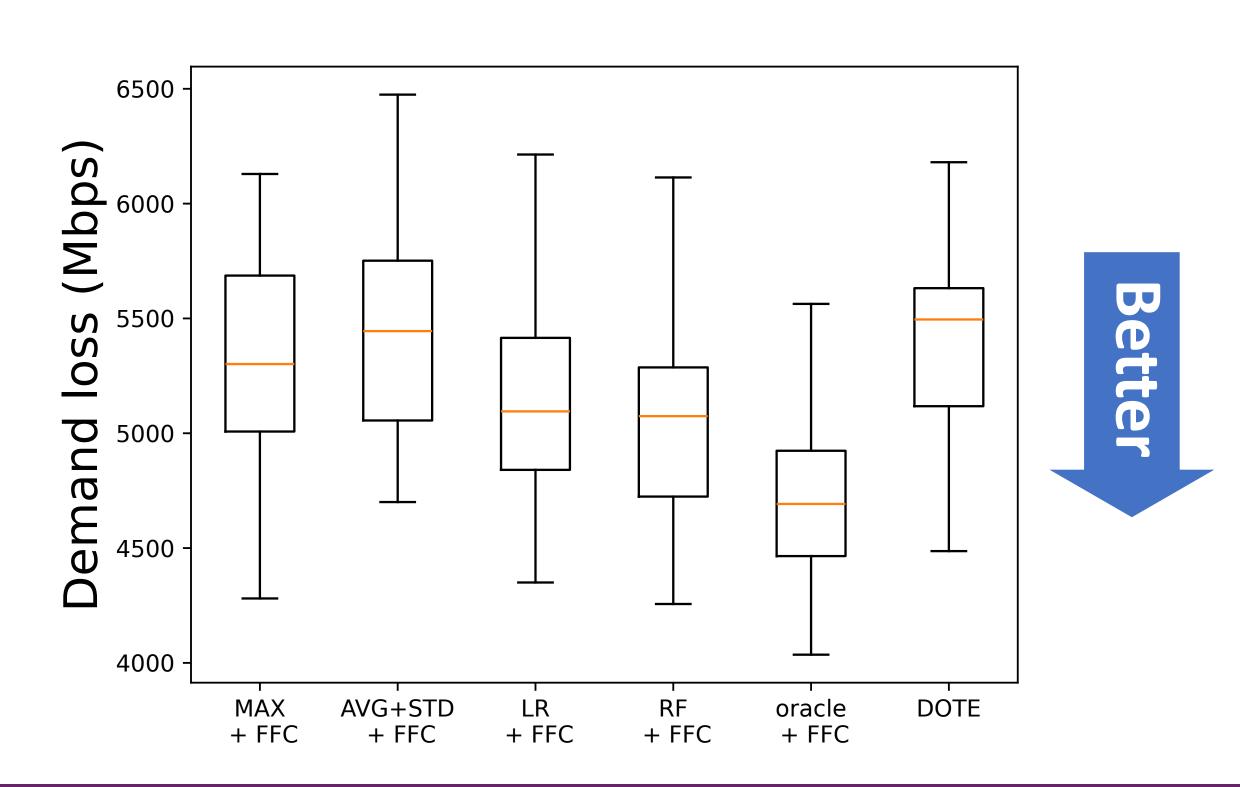


Motivation

- We tested FFC combined with different prediction methods.
- Prediction Methods
 - MAX: the maximum value
 - AVG+STD: the mean plus two standard deviations
 - LR: linear regression
 - RF: random forest regression
 - Oracle: ground truth traffic demands
- **Findings**: The demand loss of prediction-based methods is 5.77% greater than that of the ideal case.

Demand loss:

the greatest traffic loss when a component of network fails.



Step 1: design the

the loss function

Our Solution: TUFTTE

optimization problem **Demand Matrix** History **Neural Network TE Decision** Optimize Step 2: derive **Differentiable**

Optimization

Layer

Compute gradients

See paper for details and a use case.

Update parameters

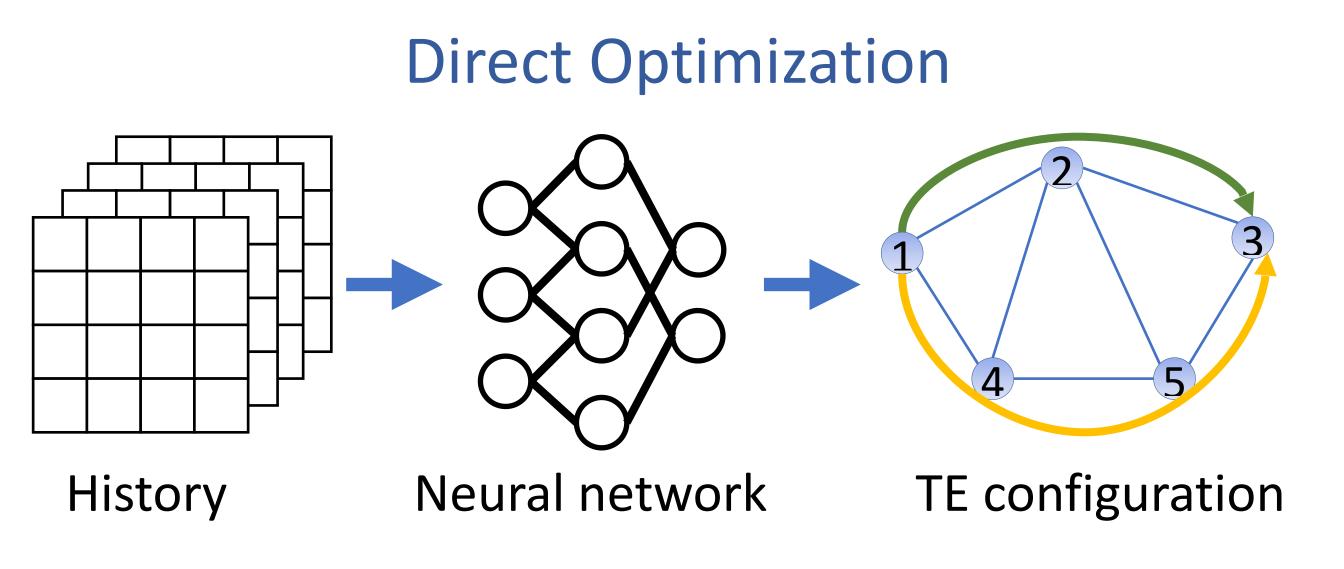
Step 3: calculate the gradients of network risks w.r.t. the demand matrix

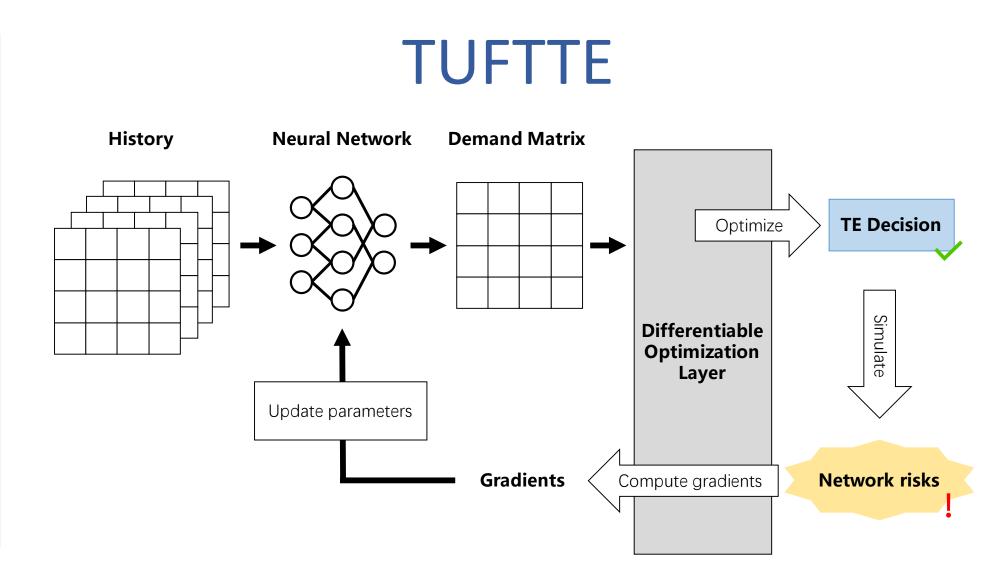
Network risks

2025 - 7 - 4

Gradients

Discussion: Why not Direct Optimization?





- Direct optimization (DOTE@NSDI'23, FIGRET@SIGCOMM'24) leverages a neural network to decide the TE configuration, without predicting the traffic demands.
- However, the use of risk function $R(\mathbf{x}, D)$ for training results in an increase in the value of the output x_t , thereby exceeding the capacity of the edge.

$$R(\mathbf{x}, D) = \max_{s \in S} \sum_{(u,v) \in K} \max\{d_{u,v} - \sum_{t \in T_{u,v}} \lambda_{t,s} x_t, 0\}. \qquad x_t: \text{ the amount of traffic}$$
 loaded on tunnel t

8

Background Motivation Design Evaluation

of nodes | # of links

15

36

12

22

Evaluation

Datasets

- Abilene and GEANT from SNDlib [1]
- 3 days of traffic traces for training
- 1 day of traffic traces for testing

Baselines

- Prediction-based methods: MaxMin (max-min fairness), MLU (maximum link utilization), FFC@SIGCOMM'14, TEAVAR@SIGCOMM'19
- Direct optimization: DOTE@NSDI'23

Metric

- Demand loss risk: the greatest traffic loss across all failure scenarios.

[1] https://sndlib.put.poznan.pl/home.action

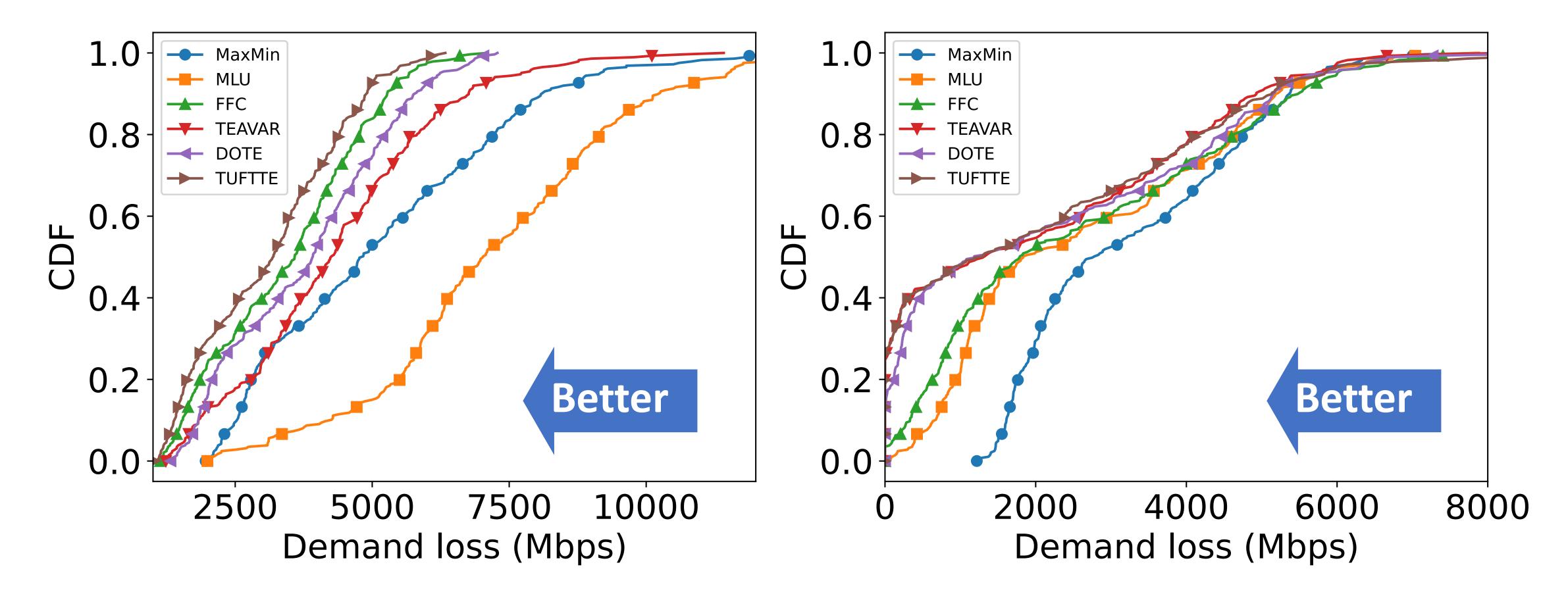
Topology

Abilene

GEANT

Background **Evaluation** Motivation Design

Main Result



• TUFTTE reduces the demand loss by an average of 11.59% on the GEANT topology compared to FFC.

Resilience to traffic fluctuations

- We increase the variation of traffic demands d by multiplying a noise, i.e., $d \leftarrow d(1+\epsilon)$, where ϵ is sampled from a uniform distribution [-c,c].
- The increment in demand loss is calculated based on running TUFTTE with traffic demands without noise.

Noise c in traffic	FFC's increment on	TUFTTE's increment
	average	on average
10%	10.40%	1.03%
15%	11.62%	1.30%
20%	13.08%	2.69%
25%	14.36%	4.49%
30%	15.54%	6.42%

• Summary: The noise has a relatively small effect on the solution quality of TUFTTE.

Thank you!

Code: https://github.com/shijuzhao/tuftte

Contact: shijuzhao@smail.nju.edu.cn

